奇性问题是实际中常常遇到的,简单的问题如Neumann边界条件的Poisson方程、应力边界条件的弹性力学方程组离散得到的线性方程组,从一般化的有限元(generalized finite element method)离散和Markov过程等可以得到的复杂一些的奇异代数方程组。这里讲的几乎奇性问题是一些含有参数的椭圆型方程(组)。几乎奇性问题的经典例子有几乎不可压弹性力学问题、各项异性椭圆型方程、大间断系数椭圆型方程、H(div)和H(curl)系统等,这些问题的数值求解在应力分析、电磁场计算、复合材料等方面有着重要的理论和应用价值。这些奇性和几乎奇性问题的研究自然得到相关的科学研究者的重点关注。多重网格方法基于多水平或多尺度的方式得到的快速线性迭代求解技术。