杨超
联系方式:
北京大学理科1号楼1520E
电话:010-62757018
Email: chao_yang(AT)pku.edu.cn
个人主页:http://scholar.pku.edu.cn/chaoyang
教育经历:
2007年7月 中国科学院软件研究所 博士学位
2002年7月 中国科学技术大学数学系 学士学位
工作经历:
2018/02-今 北京大学 数学科学学院 科学与工程计算系 教授
2018/04-今 北京大学 科学与工程计算中心 副主任
2007/07-2018/01中国科学院软件研究所 助理研究员、副研究员、研究员
2016/06-2018/01中国科学院软件研究所 并行软件与计算科学实验室 副主任
研究领域:
主要从事大规模科学与工程计算、高性能计算、大数据分析与环境、能源、材料等领域的交叉科学研究.
获得荣誉:
1. 2018北京市杰出青年科学基金.
2. 2017中国科学院杰出科技成就奖.
3. 2017CCF-IEEE CS青年科学家奖.
4. 2017中国科学年度新闻人物-基础研究领域科学家.
5. 2016中国十大科技进展新闻.
6. 2016美国计算机学会“戈登•贝尔”奖 (ACM Gordon Bell Prize).
7. 2012年度中国科学院卢嘉锡青年人才奖.
代表性论文:
1. [CPC18] Y. Wei, C. Yang, J. Huang, Parallel energy-stable phase field crystal simulations based on domain decomposition methods, Comput. Phys. Comm., to appear (2018).
2. [TPDS18] L. He, H. An, C. Yang, F. Wang, et al., PEPS++: Towards extreme-scale simulations of strongly correlated quantum many-particle models on Sunway TaihuLight, IEEE Trans. Par. Dist. Sys., to appear (2018).
3. [TACO18b] Y. Cai, Y. Ao, C. Yang, W. Ma, H. Zhao, Extreme-scale high-order WENO simulations of 3-D detonation wave with ten million cores, ACM Trans. Arch. Code Opt., 15:2 (2018), pp. 26:1-21.
4. [CMAME18] H. Yang, S. Sun, Y. Li, C. Yang, A scalable fully implicit framework for reservoir simulation on parallel computers, Comput. Methods Appl. Mech. Eng., 330 (2018), pp. 334-350.
5. [TACO18a] Y. Ao, C. Yang, F. Liu, et al., Performance optimization of the HPCG benchmark on the Sunway TaihuLight supercomputer, ACM Trans. Arch. Code Opt., 15:1 (2018), pp. 11:1-20.
6. [GJI17] L. Yin, C. Yang, S.-Z. Ma, et al., Parallel numerical simulation of the thermal convection in the Earth’s outer core on the cubed-sphere, Geophys. J. Int’l., 209:3 (2017), pp. 1934-1954.
7. [JCP17] H. Yang, S. Sun, C. Yang, Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media, J. Comput. Phys., 332 (2017), pp. 1-20.
8. [SUPE17] P. Zhang, C. Yang, C. Chen, et al., Development of a hybrid parallel MCV-based high-order global shallow-water model, J. Supercomput., 73:6 (2017), pp. 2823-2842.
9. [Micro17] H. Fu, L. Gan, W. Luk, C. Yang, et al., Solving mesoscale atmospheric dynamics using reconfigurable dataflow architecture, IEEE Micro, 37:4 (2017), pp. 40-50.
10. [PONE17] H. Fu, L. Gan, C. Yang, W. Xue, et al., Solving global shallow water equations on heterogeneous supercomputers, PLoS ONE, 12:3 (2017), pp. e0172583.
11. [IPDPS17] Y. Ao, C. Yang, X. Wang, et al., 26 PFLOPS stencil computations for atmospheric modeling on Sunway TaihuLight, in: Proc. IEEE IPDPS-2017, pp. 535-544.
12. [ICPP17] L. Jiang, C. Yang, Y. Ao, et al., Towards highly efficient DGEMM on the emerging SW26010 many-core processor, in: Proc. ICPP-2017, pp. 422-431.
13. [SISC16b] H. Yang, C. Yang, S. Sun, Active-set reduced-space methods with nonlinear elimination for two-phase flow problems in porous media, SIAM J. Sci. Comput., 38:4 (2016), pp. B593-B618.
14. [SISC16a] J. Huang, C. Yang, X.-C. Cai, A nonlinearly preconditioned inexact Newton algorithm for steady state lattice Boltzmann equations, SIAM J. Sci. Comput., 38:3 (2016), pp. S1701-S1724.
15. [SC16] C. Yang, W. Xue, H. Fu, et al., 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics, in: Proc. ACM/IEEE SC-2016, pp. 6:1-12.
16. [NSR16] J. Sun, C. Yang, X.-C. Cai, Algorithm development for extreme-scale computing, Nat’l Sci. Rev., 3:1 (2016), pp. 26-27.
17. [IJHPC16] Y. Liu, C. Yang, 623 Tflop/s HPCG run on Tianhe-2: leveraging millions of hybrid cores, Int’l J. High Perf., 30:1 (2016), pp. 39-54.
18. [CAS16] Y. Liu, H. Yang, C. Jiang, C. Yang, A scalable fully implicit method with adaptive time stepping for unsteady compressible inviscid flows, Comput. & Struct., 176 (2016), pp. 1-12.
19. [SISC15] J. Huang, C. Yang, X.-C. Cai, Fully implicit method for lattice Boltzmann equations, SIAM J. Sci. Comput., 37:5 (2015), pp. S291-S313.
20. [JCP15] X. Zheng, C. Yang, X.-C. Cai, D. Keyes, A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D, J. Comput. Phys., 285 (2015), pp. 55-70.
21. [TC15] W. Xue, C. Yang, H. Fu, et al., Ultra-scalable CPU-MIC acceleration of mesoscale atmospheric modeling on Tianhe-2, IEEE Trans. Computers, 64:8 (2015), pp. 2382-2393.
22. [TRETS15] H. Fu, L. Gan, W. Luk, C. Yang, et al., Solving the global atmospheric equations through heterogeneous reconfigurable platforms, ACM T. Recon. Tech. Sys., 8:2 (2015), pp. 11:1-16.
23. [ICPP15] P. Zhang, Y. Ao, C. Yang, et al., Pattern-driven hybrid multi- and many-core acceleration in the MPAS shallow water model, in: Proc. ICPP-2015, pp. 71-80.
24. [CAF15] H. Yang, C. Yang, X.-C. Cai, Mixed order discretization based two-level Schwarz precondtioners for a tracer transport problem on the cubed-sphere, Comput. & Fluids, 110 (2015), pp. 88-95.
25. [AMC15] J. Huang, L. Cao, C. Yang, A multiscale algorithm for radiative heat transfer equation with rapidly oscillating coefficients, Appl. Math. Comput., 266 (2015), pp 149–168.
26. [SISC14] C. Yang, X.-C. Cai, A scalable fully implicit compressible Euler solver for mesoscale nonhydrostatic simulation of atmospheric flows, SIAM J. Sci. Comput., 36:5 (2014), pp. S23-S47.
27. [JSC14] H. Yang, C. Yang, X.-C. Cai, Parallel domain decomposition methods with mixed order discretization for fully implicit solution of tracer transport problems on the cubed-sphere, J. Sci. Comput., 61:2 (2014), pp. 258-280.
28. [IPDPS14] W. Xue, C. Yang, H. Fu, et al., Enabling and scaling a global shallow-water atmospheric model on Tianhe-2, in: Proc. IEEE IPDPS-2014, pp. 745-754.
29. [PPoPP13] C. Yang, W. Xue, H. Fu, et al., A Peta-scalable CPU-GPU algorithm for global atmospheric simulations, in: Proc. ACM PPoPP-2013, pp. 1-12.
30. [JCP11] C. Yang, X.-C. Cai, Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere, J. Comput. Phys., 230:7 (2011), pp. 2523-2539.
31. [SISC10] C. Yang, J. Cao, X.-C. Cai, A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere, SIAM J. Sci. Comput., 32:1 (2010), pp. 418–438.
|