王建祥
北京大学工学院副院长
联系方式:
联系电话:010-62757948
电子邮箱:jxwang@pku.edu.cn
个人主页:http://www2.coe.pku.edu.cn/subpaget.asp?id=133
教育经历:
1979年-1983年:南京航空航天大学本科生。获学士学位
1983年-1986年:华南理工大学硕士研究生。获硕士学位
1991年-1995年:澳大利亚悉尼大学博士研究生。获博士学位
1996年和1997年在英国帝国理工学院和丹麦阿尔堡大学做博士后研究
1998年起在北京大学力学与工程科学系工作。
研究领域:
固体力学、复合材料力学、细观力学
背景资料:
现任北京大学工学院力学与空天技术系教授、英国卡迪夫大学荣誉访问教授(2005-2016)、中国力学学会常务理事、中国力学学会国际交流与合作工作委员会副主任、中国复合材料学会常务理事、Acta Mechanica Sinica、 Science China (G)、 International Journal of Applied Mechanics、《应用力学学报》编委; Acta Mechanica Solida Sinica (Associate Editor), Advanced Modeling and Simulation in Engineering Sciences (Associate Editor). 王建祥长期从事复合材料力学、非均质材料的力学和物理性能研究,在复合材料层合板的断裂和强度分析、优化设计、短纤维增强复合材料的本构关系、非均质材料细观力学和广义传导性能、纳米力学等方面取得了一系列研究成果。王建祥是全国优秀博士论文指导教师(2007)。曾获得北京大学优秀共产党员标兵(2008)、北京高校优秀共产党员(2008)、北京市优秀教师(2009)、北京市“群众心目中的好党员”(2010)等荣誉,以及国家教育部跨世纪人才基金(2000)、中国力学学会青年科技奖(2002)、国家杰出青年科学基金(2005),2008年被聘为教育部长江学者特聘教授。
主要论文列表:
1. Karihaloo, B. L., Zhang, K. and Wang, J. 2013. Honeybee combs: How the circular cells transform into rounded hexagons.Journal of the Royal Society Interface 10, 20130299. (Reported at http://www.nature.com/news/how-honeycombs-can-build-themselves-1.13398; http://news.discovery.com/animals/insects/secret-to-honeycomb-revealed-130717.htm;http://www.livescience.com/38242-why-honeybee-honeycombs-are-perfect.html;http://www.abc.net.au/science/articles/2013/07/18/3805894.htm; http://www.huffingtonpost.com/2013/07/17/honeycombs-build-themselves-physics-bees_n_3611825.html )
2. Sun, T., Wang, J. & Kang, W. 2013. Van der Waals interaction-tuned heat transfer in nanostructures. Nanoscale 5, 128–133.
3. Zhang, K., Zhao, X. W., Duan, H. L., Karihaloo, B. L. & Wang, J. 2011. Pattern transformations in periodic cellular solids under external stimuli. Journal of Applied Physics 109, Art. 084907.
4. Wang, J., Huang, Z. P., Duan, H. L., Yu, S. W., Feng, X. Q., Wang, G. F., Zhang, W. X. & Wang, T. J. 2011. Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica 24, 52—82.
5. Zhang, K., Han, T., Duan, H. L. & Wang, J. 2010 A theoretical study of possible shape and phase changes of carbon nanotube crystals during contraction and expansion. Carbon 48, 2948—2952.
6. Zhang, K., Duan, H. L., Karihaloo, B. L. & Wang, J. 2010 Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proceedings of the National Academy of Sciences of the United States of America, 107 (21), 9502—9506.
7. Zhang, K., Si, F .W., Duan, H. L. & Wang, J. 2010 Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomaterialia 6, 2165—2171.
8. Shao, L. H., Luo, R. Y., Bai, S. L. & Wang, J. 2009 Prediction of effective moduli of carbon nanotube-reinforced composites with waviness and debonding. Composite Structures 87, 274—281.
9. Duan, H. L., Wang, J. & Karihaloo, B. L. 2009 Theory of elasticity at the nano-scale. Advances in Applied Mechanics 42, 1-68.
10. Duan, H.L., Yi, X., Huang, Z.P. & Wang, J. 2007b A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part II – application and scaling laws. Mechanics of Materials 39, 94—103.
11. Duan, H.L., Yi, X., Huang, Z.P. & Wang, J. 2007a A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part I – theoretical framework. Mechanics of Materials 39, 81—93.
12. Duan, H. L., Wang, J., Karihaloo, B. L. & Huang, Z. P. 2006 Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Materialia 54, 2983—2990.
13. Wang, J., Duan, H. L. & Yi, X. 2006 Bounds on effective conductivities of heterogeneous media with graded constituents.Physical Review B 73, Art. 104208.
14. Duan, H.L., Karihaloo, B.L., Wang, J. & Yi, X. 2006 Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Physical Review B 73, Art. 174203.
15. Duan, H. L., Jiao, Y., Yi, X., Huang, Z. P. & Wang, J. 2006 Solutions of inhomogeneity problems with graded shells and application to core-shell nanoparticles and composites. Journal of the Mechanics and Physics of Solids 54, 1401—1425.
16. Wang, J., Duan, H. L., Huang, Z. P. & Karihaloo, B. L. 2006 A scaling law for properties of nano-structured materials.Proceedings of the Royal Society A 462, 1355—1363.
17. Huang, Z.P. & Wang, J. 2006 Nonlinear mechanics of solids containing isolated voids. Applied Mechanics Reviews 59, 210—229.
18. Chu, H. J. & Wang, J. 2005 Strain distribution in arbitrarily shaped quantum dots with nonuniform composition. Journal of Applied Physics 98, Art. 034315.
19. Duan, H. L., Wang, J., Huang, Z. P. & Karihaloo, B. L. 2005 Eshelby formalism for nano-inhomogeneities. Proceedings of the Royal Society A 461, 3335--3353.
20. Duan, H. L., Wang, J., Huang, Z. P. & Karihaloo, B. L. 2005 Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechanics and Physics of Solids 53, 1574--1596.
21. Duan, H. L., Wang, J., Huang, Z. P. & Zhong, Y. 2005 Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings. Proceedings of the Royal Society A 461, 1055--1080.
22. Zhong, Y., Wang, J., Wu, Y. M. & Huang, Z. P. 2004 Effective moduli of particle-filled composite with inhomogeneous interphase Part II: mapping method and evaluation. Composites Science and Technology 64, 1353--1362.
23. Wu, Y. M., Huang, Z. P., Zhong, Y. & Wang, J. 2004 Effective moduli of particle-filled composite with inhomogeneous interphase Part I: bounds. Composites Science and Technology 64, 1345--1351.
24. Wang, J., & Pyrz, R. 2004b Prediction of the overall moduli of layered silicate-reinforced nanocomposites Part II: analyses.Composites Science and Technology 64, 935--944.
25. Wang, J., & Pyrz, R. 2004a Prediction of the overall moduli of layered silicate-reinforced nanocomposites Part I: basic theory and formulas. Composites Science and Technology 64, 925--934.
26. Wang, J. 2002 Overall moduli and constitutive relations of bodies containing multiple bridged microcracks. International Journal of Solids & Structures 39, 2203--2214.
27. Wang, J., Fang, J. & Karihaloo, B. L. 2000 Asymptotic bounds on overall moduli of cracked bodies. International Journal of Solids & Structures 37, 6221--6237.
28. Wang, J., Fang, J. & Karihaloo, B. L. 2000 Asymptotics of multiple crack interactions and prediction of overall modulus. International Journal of Solids & Structures 37, 4261-4273.
29. Davies, G.A.O., Hitchings, D. & Wang, J. 2000 Prediction of threshold impact energy for onset of delamination in quasi-isotropic carbon/epoxy composite laminates under low-velocity impact. Composites Science and Technology 60, 1--7.
30. Wang, J., Andreasen, J. H. & Karihaloo, B. L. 2000 The solution of an inhomogeneity in a finite plane region and its application to composite materials. Composites Science and Technology 60, 75--82.
31. Karihaloo, B. L., Wang, J. & Grzybowski, M. 1996 Doubly periodic arrays of bridged cracks and short-fibre reinforced cementitious materials. Journal of the Mechanics and Physics of Solids 44, 1565--1586.
32. Wang, J. & Karihaloo, B. L. 19994b Mode II and mode III stress singularities and intensities at a crack tip terminating on a transversely isotropic-orthotropic bimaterial interface. Proceedings of the Royal Society A 444, 447--460.
33. Wang, J. & Karihaloo, B. L. 1994a Cracked composite laminates least prone to delamination. Proceedings of the Royal Society A 444, 17--35.
|