Member
Advisor
Guest Professor
Researchers
 

Tiao LU

Contact Information 
E-mail:tlu@math.pku.edu.cn 
Tel:010-62751804
Homepage: http://dsec.pku.edu.cn/~tlu/index.php

Education

Ph.D. 9/1999-7/2004 School of Mathematical Sciences, Peking University, China
B.S. 9/1995-7/1999 School of Mathematical Sciences, Peking University, China 

Working Experience

Associate Prof., 8/2010 - present, School of Mathematical Sciences, Peking University, China 
Assistant Prof., 8/2006 - 7/2010, School of Mathematical Sciences, Peking University, China 
Postdoctoral researcher, 9/2004 - 7/2006, Dept. of Mathematics, UNC at Charlotte, U.S.A. 

Research Areas

1. High order numerical methods for the lossy Maxwell equation 
2. Numerical simulation of electromagnetic waves using discontinuous Galerkin methods 
3. hybrid Fourier spectral-discontinuous Galerkin methods for the Schr?dinger-Poisson system 
4. adaptive conservative spectral element methods for the transientWigner equation 
5. deterministic solvers for the Boltzmann-Schr?dinger-Poisson system 
6. Numerical solution of the Wigner transport equation 

Interested Research Areas in CAPT
1. Computational Electromagnetics 
2. Numerical Solution of Classical/Quantum Transport Equation 

Selected Publications 
1. A Finite Volume Method for the Multi Subband Boltzmann Equation with realistic 2D Scattering in DG MOSFETs, T. Lu, G. Du, X. Liu and P. Zhang, Comm. Comput. Phys., volume 10, No. 2, 305-338, 2011. 
2. Quantum Hydrodynamic Model by Moment Closure of Wigner Equation Z. Cai, Y. Fan, R. Li, T. Lu and Y. Wang, J. Math. Phys., vol. 53, p. 103503, numpages 18, 2012. 
3. Linear scaling discontinuous Galerkin density matrix minimization method with local orbital enriched finite element basis: 1-D lattice model system, T. Lu, W. Cai, J. Xin and Y. Guo, Comm. Comput. Phys., vol. 14, no. 2, pp. 276-300, 2013. 
4. Quantum Hydrodynamic Model of Density Functional Theory Z. Cai, Y. Fan, R. Li, T. Lu and W. Yao, J. Math. Chem., Vol. 51, No. 
5, pp. 1747--1771, 2013, DOI 10.1007/s10910-013-0176-1 5. A device adaptive inflow boundary condition for Wigner equations of quantum transport H. Jiang, T. Lu and W. Cai, Journal of Computational Physics, Vol. 258, pp. 773-786, 2014. 

Recent Publications 
1 . Adaptive Conservative Cell Average Spectral Element Methods for Transient Wigner Equation in Quantum Transport, S. Shao, T. Lu and W. Cai, Comm. Comput. Phys., volume 9, No. 3, 711-739, 2011. 
2. A Finite Volume Method for the Multi Subband Boltzmann Equation with realistic 2D Scattering in DG MOSFETs, T. Lu, G. Du, X. Liu and P. Zhang, Comm. Comput. Phys., volume 10, No. 2, 305-338, 2011. 
3. Quantum Hydrodynamic Model by Moment Closure of Wigner Equation Z. Cai, Y. Fan, R. Li, T. Lu and Y. Wang, J. Math. Phys., vol. 53, p. 103503, numpages 18, 2012. 
4. Linear scaling discontinuous Galerkin density matrix minimization method with local orbital enriched finite element basis: 1-D lattice model system, T. Lu, W. Cai, J. Xin and Y. Guo, Comm. Comput. Phys., vol. 14, no. 2, pp. 276-300, 2013. 
5. Simulation Study of Quasi-ballistic Transport in Asymmetric DG-MOSFET by Directly Solving Boltzmann Transport Equation , G. Liu, G. Du, T. Lu, X. Liu, P. Zhang and X. Zhang, IEEE Transactions on Nanotechnology, Vol. 12, Issue 2, pp. 168--173, 2013. DOI 10.1109/TNANO.2013.2237924 
6. Quantum Hydrodynamic Model of Density Functional Theory Z. Cai, Y. Fan, R. Li, T. Lu and W. Yao, J. Math. Chem., Vol. 51, No. 5, pp. 1747--1771, 2013, DOI 10.1007/s10910-013-0176-1 
7. Numerical Method for High Order Hyperbolic Moment System of Wigner Equation R. Li, T. Lu, Y. Wang and W. Yao, accepted for publication by Comm. Comput. Phys., 2013. 
8. Numerical Comparison of Three Stochastic Methods for Nonlinear PN Junction Problems W. Yao and T. Lu, accepted for publication by Frontiers of Mathematics in China, 2013. 
9. Simulation of an $n^{+}$-$n$-$n^{+}$ Diode by Using Globally-Hyperbolically-Closed High-Order Moment Models Z. Hu, R. Li, T. Lu, Y. Wang and W. Yao, accepted for publication by Journal of Scientific Computing, 2013. 
10. A device adaptive inflow boundary condition for Wigner equations of quantum transport H. Jiang, T. Lu and W. Cai, Journal of Computational Physics, Vol. 258, pp. 773-786, 2014. 

 

Copyright: Center for Applied Physics and Technology, Peking  University Room 402, Engineering Building 1, Peking University, Bejing,  100871, China

Tel: 86-10-62753944      E-mail: ganqiumei@pku.edu.cn