Member
Advisor
Guest Professor
Researchers
 

Huazhong Tang

Contact Information 
Tel:010-62757018 
E-mail:hztang@math.pku.edu.cn 
Homepage:http://dsec.pku.edu.cn/~tanghz 


Education
3/1993-5/1996, Doctor of Engineering, Dept. of Aerodynamics, Nanjing University of Aeronautics and Astronautics. 
9/1990-3/1993, M.S., School of Sciences, Nanjing University of Aeronautics and Astronautics
9/1986-6/1990, B.S., Dept of Mathematics, Suzhou University 

Working Experience 
10/01/2008--09/06/2008, Visiting Professor, Department of Mathematics, The Hong Kong Baptist University, Hong Kong. 
6/28/2006--8/28/2006, Visiting Scholar, Department of Mathematics, The Hong Kong University of Science and Technology. 
6/2002--9/2003, Research Fellow of Alexander von Humboldt Foundation, Institut fur Analysis und Numerik, Otto-von-Guericke Universitaet Magdeburg, Germany. 
7/1999--7/2000, Visiting Scholar, Department of Mechanical Engineering, The Hong Kong University of Science and Technology 10/2000--2/2001; 
5/2001--8/2001, Visiting Research Scholar, Department of Mathematics, The Hong Kong Baptist University, 


Research Areas
Mathematical aspects of Scientific and Engineering Computing Computational Fluid Dynamics, as well as applications.

Selected Publications 
1. J.Q. Li, H.Z. Tang, G. Warnecke, and L.M. Zhang, Local oscillations in finite difference solutions of hyperbolic conservation laws, Math. Comp., 78(2009), 1997-2018. 
2. H.Z. Tang and T.G. Liu, A note on the conservative schemes for the Euler equations, J. Comput. Phys., 218(2), 2006, 451-459. 
3. H.Z. Tang, On the sonic point glitch, J. Comput. Phys., 202(2), 2005, 507-532. 
4. H.Z. Tang and G. Warnecke, A note on (2k+1)-point conservative monotone schemes, ESAIM-Mathematical Modeling and Numerical Analysis (M2AN), 38(2), 2004, 345-357. 
5. H.Z. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41(2), 2003, 487-515. 


Recent Publications 
1. K.L. Wu, Z.C. Yang, and H.Z. Tang, A third-order accurate direct Eulerian GRP scheme for one-dimensional relativistic hydrodynamics, accepted by EAJAM, 2014. 
2. J. Zhao, P. He, and H.Z. Tang, Steger-Warming flux vector splitting method for special relativistic hydrodynamics, accepted by Mathematical Methods in the Applied Sciences, 2013. doi: 10.1002/mma.2857 
3. K.L. Wu, Z.C. Yang, and H.Z. Tang, A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics, J. Comput. Phys., 264,(2014),177–208 
4. N. Liu and H.Z. Tang, A high-order accurate gas-kinetic scheme for one- and two-dimensional flow simulation, Commun. Comput. Phys., 15(2014), 911-943. 
5. H.M. Lin, H.Z. Tang, and W. Cai, Accuracy and efficiency in computing electrostatic potential for an ion-channel model in layered dielectric media, J. Comput. Phys., 259(2014), 488-512. 
6. K.L. Wu and H.Z. Tang, Finite volume local evolution Galerkin method for two-dimensional special relativistic hydrodynamics, J. Comput. Phys., 256(2014), 277-307. 
7. J. Xu, S.H. Shao, and H.Z. Tang, Numerical methods for nonlinear Dirac equation, J. Comput. Phys., 245(2013), 131-149. 
8. J. Zhao and H.Z. Tang, Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics, J. Comput. Phys., 242(2013), 138-168. 
9. H.M. Lin, Z.L. Xu, H.Z. Tang, and W. Cai, Image approximations to electrostatic potentials in layered electrolytes/dielectrics and an ion-channel model, J. Sci. Comput., 53(2), 2012, 249-267. 
10. X. Ji and H.Z. Tang, High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one- and two-dimensional fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 5(2012), 333-358. 
11. P. He and H.Z. Tang, An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics, Computers & Fluids, 60(2012), 1-20. 
12. Z.C. Yang and H.Z. Tang, A direct Eulerian GRP scheme for relativistic hydrodynamics: Two-dimensional case, J. Comput. Phys., 231(2012), 2116-2139. 
13. P. He and H.Z. Tang, An adaptive moving mesh method for two-dimensional relativistic hydrodynamics, Commun. Comput. Phys., 11(2012), 114-146. 
14. Z.C. Yang, P. He, and H.Z. Tang, A direct Eulerian GRP scheme for relativistic hydrodynamics: One-dimensional case, J. Comput. Phys., 230(22), 2011,7964-7987. 
15. EE Han, J.Q. Li, and H.Z. Tang, Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problems for compressible Euler equations, Commun. Comput. Phys., 10(2011), 577-606. 
16. H.Z. Tang, K. Xu, and C.P. Cai, Gas-kinetic BGK scheme for three dimensional magnetohydrodynamics, Numer. Math. Theor. Meth. Appl., 3(4), 2010, 387-404. 
17. EE Han, J.Q. Li, and H.Z. Tang, An adaptive GRP scheme for compressible fluid flows, J. Comput. Phys., 229(1), 2010, 1448-1466. 
18. J.Q. Li, H.Z. Tang, G. Warnecke, and L.M. Zhang, Local oscillations in finite difference solutions of hyperbolic conservation laws, Math. Comp., 78(2009), 1997-2018. 

 

Copyright: Center for Applied Physics and Technology, Peking  University Room 402, Engineering Building 1, Peking University, Bejing,  100871, China

Tel: 86-10-62753944      E-mail: ganqiumei@pku.edu.cn