研究人员
顾问
北大客座教授
中心成员

 

汤华中

 

科学与工程计算系主任 

联系方式: 
固定电话:010-62757018 
E-mail:hztang@math.pku.edu.cn 
个人主页:http://dsec.pku.edu.cn/~tanghz 


教育经历: 
1996年5月 南京航空航天大学空气动力学系 工学博士学位 
1993年3月 南京航空航天大学数理力学系 理学硕士学位 1990年6月 苏州大学数学系 理学学士学位 


工作经历: 
1996.7-1998.6 中科院计算数学与科学工程计算研究所 博士后 
1998.7-2001.8 中科院计算数学与科学工程计算研究所,科学与工程计算国家重点实验室 副研究员 
2001.9-2004.7 北京大学数学科学学院科学与工程计算系 副教授 
2004.8-至今 北京大学数学科学学院科学与工程计算系 教授 


研究领域: 1. 微分方程数值解 2. 流体力学中数值方法 3. 自适应网格方法 4. 科学与工程计算 
在中心的研究方向: 1. 流体力学中数值方法 2. 科学与工程计算 


背景资料: 
北京大学数学科学学院教授,博士生导师,冯康科学计算奖、国家杰出青年科学基金、教育部新世纪优秀人才支持计划和德国洪堡基金会研究奖学金(Research fellow of the Alexander von Humboldt foundation)的获得者(2013,2009,2007,2001)。主要从事偏微分方程数值方法、计算流体力学、科学与工程计算等研究。出版中科院研究生教材一部,发表60余篇学术论文。与合作者于1997 年获得中国航空工业总公司科学技术进步贰等奖和于2007 年获得教育部高校科技奖自然科学一等奖。现担任《Journal of Computational Physics》、《International Journal for Numerical Methods in Fluids》、和《East Asia Journal on Applied Mathematics》等期刊编委。 

社会兼职:
中国计算数学学会理事会常务理事兼副秘书长 中国工业与应用数学学会理事兼副秘书长

获得荣誉: 
德国洪博研究奖学金(2001) 
教育部“新世纪优秀人才支持计划”(2007) 
国家杰出青年基金(2009) 
冯康科学计算奖(2013) 
航空航天工业部科技进步奖二等奖(1997) 
高校科学技术奖自然科学一等奖(2007) 


代表论文: 
1. J.Q. Li, H.Z. Tang, G. Warnecke, and L.M. Zhang, Local oscillations in finite difference solutions of hyperbolic conservation laws, Math. Comp., 78(2009), 1997-2018. 
2. H.Z. Tang and T.G. Liu, A note on the conservative schemes for the Euler equations, J. Comput. Phys., 218(2), 2006, 451-459. 
3. H.Z. Tang, On the sonic point glitch, J. Comput. Phys., 202(2), 2005, 507-532. 
4. H.Z. Tang and G. Warnecke, A note on (2k+1)-point conservative monotone schemes, ESAIM-Mathematical Modeling and Numerical Analysis (M2AN), 38(2), 2004, 345-357. 
5. H.Z. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41(2), 2003, 487-515. 


近5年发表论文: 
1. K.L. Wu, Z.C. Yang, and H.Z. Tang, A third-order accurate direct Eulerian GRP scheme for one-dimensional relativistic hydrodynamics, accepted by EAJAM, 2014. 
2. J. Zhao, P. He, and H.Z. Tang, Steger-Warming flux vector splitting method for special relativistic hydrodynamics, accepted by Mathematical Methods in the Applied Sciences, 2013. doi: 10.1002/mma.2857 
3. K.L. Wu, Z.C. Yang, and H.Z. Tang, A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics, J. Comput. Phys., 264,(2014),177–208 
4. N. Liu and H.Z. Tang, A high-order accurate gas-kinetic scheme for one- and two-dimensional flow simulation, Commun. Comput. Phys., 15(2014), 911-943. 
5. H.M. Lin, H.Z. Tang, and W. Cai, Accuracy and efficiency in computing electrostatic potential for an ion-channel model in layered dielectric media, J. Comput. Phys., 259(2014), 488-512. 
6. K.L. Wu and H.Z. Tang, Finite volume local evolution Galerkin method for two-dimensional special relativistic hydrodynamics, J. Comput. Phys., 256(2014), 277-307. 
7. J. Xu, S.H. Shao, and H.Z. Tang, Numerical methods for nonlinear Dirac equation, J. Comput. Phys., 245(2013), 131-149. 
8. J. Zhao and H.Z. Tang, Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics, J. Comput. Phys., 242(2013), 138-168. 
9. H.M. Lin, Z.L. Xu, H.Z. Tang, and W. Cai, Image approximations to electrostatic potentials in layered electrolytes/dielectrics and an ion-channel model, J. Sci. Comput., 53(2), 2012, 249-267. 
10. X. Ji and H.Z. Tang, High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one- and two-dimensional fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 5(2012), 333-358. 
11. P. He and H.Z. Tang, An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics, Computers & Fluids, 60(2012), 1-20. 
12. Z.C. Yang and H.Z. Tang, A direct Eulerian GRP scheme for relativistic hydrodynamics: Two-dimensional case, J. Comput. Phys., 231(2012), 2116-2139. 
13. P. He and H.Z. Tang, An adaptive moving mesh method for two-dimensional relativistic hydrodynamics, Commun. Comput. Phys., 11(2012), 114-146. 
14. Z.C. Yang, P. He, and H.Z. Tang, A direct Eulerian GRP scheme for relativistic hydrodynamics: One-dimensional case, J. Comput. Phys., 230(22), 2011,7964-7987. 
15. EE Han, J.Q. Li, and H.Z. Tang, Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problems for compressible Euler equations, Commun. Comput. Phys., 10(2011), 577-606. 
16. H.Z. Tang, K. Xu, and C.P. Cai, Gas-kinetic BGK scheme for three dimensional magnetohydrodynamics, Numer. Math. Theor. Meth. Appl., 3(4), 2010, 387-404. 
17. EE Han, J.Q. Li, and H.Z. Tang, An adaptive GRP scheme for compressible fluid flows, J. Comput. Phys., 229(1), 2010, 1448-1466. 
18. J.Q. Li, H.Z. Tang, G. Warnecke, and L.M. Zhang, Local oscillations in finite difference solutions of hyperbolic conservation laws, Math. Comp., 78(2009), 1997-2018. 


Copyright: Center for Applied Physics and Technology, Peking  University Room 402, Engineering Building 1, Peking University, Bejing,  100871, China

Tel: 86-10-62753944      E-mail: jyxii@pku.edu.cn; ganqiumei@pku.edu.cn