科研队伍
研究人员
博士后
博士生

 

王立锋

联系方式:
Email: wang_lifeng@iapcm.ac.cn; lif_wang@pku.edu.cn
电话:010-5987-2129

 

教育经历:

2008.9—2011.7 中国矿业大学(北京)力学系和北京应用物理与计算数学研究所 流体力学博士
2005.9—2008.7 中国矿业大学(北京) 理学院 理论物理硕士

工作经历:

2014.7—至今 北京应用物理与计算数学研究所 副研究员
2013.3—2014.7 北京应用物理与计算数学研究所 助理研究员
2011.7—2013.3 北京大学CAPT 博士后
2010.9—2011.1香港浸会大学数学系 研究助理

 

研究领域:

从事内爆高能量密度(HED)流体力学不稳定性的前沿和应用基础问题研究。研究领域主要是与惯性约束聚变(ICF)相关的流体力学不稳定性,瑞利—泰勒不稳定性、瑞奇迈尔—麦西科夫不稳定性、开尔文—亥姆霍兹不稳定性和球收缩几何效应。
在中心研究方向:流体力学不稳定性


背景资料:

近年来专注于等离子体流体不稳定性基本问题及其在高能量密度物理中的应用研究,率先开展烧蚀开尔文-亥姆霍兹不稳定性(KHI)数值模拟方面的研究;提出了烧蚀瑞利-泰勒不稳定性(RTI)尖钉速度饱和的概念,并说明了尖钉减速的物理机制;建立了KHI和RTI的弱非线性模型,仔细研究了惯性约束聚变(ICF)关心的密度和速度过渡层宽度效应对RTI和KHI的线性和弱非线性影响规律。关于预热条件下烧蚀RTI射流状尖钉形成机理的研究论文被选为2012年度Phys. Plasmas编辑推荐论文。2011年3月应邀访问美国罗切斯特大学激光能源实验室 (LLE)。2011年10月获得中国博士后科学基金第五十批面上资助;2012年9月获中国博士后科学基金第五批特别资助;2012年8月获国家自然科学基金面上项目资助。

 

获得荣誉:

2012年蔡诗东等离子体物理奖
2012年北京大学优秀博士后称号
2013年全国优秀博士学位论文

 

代表性论文:
[1] Wang Li-Feng, Wu Jun-Feng, Ye Wen-Hua, Fan Zheng-Feng, He Xian-Tu.Design of an Indirect-Drive Pulse Shape for ~1.6MJ Inertial Confinement Fusion Ignition Capsules. Chin. Phys. Lett. 2014,31(4): 045201/1-4
[2] Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M, and Yu M Y. Formation of jet-like spikes from the ablative Rayleigh-Taylor instability, Phys. Plasmas, 2012, 19: 100701/1-4
[3] Wang L F, Ye W H, Sheng Z M, Don W S, Li Y J, and He X T. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime. Phys. Plasmas, 2010, 17:122706/1-8
[4] Wang L F, Ye W H and Don W S, Sheng Z M, Li Y J, and He X T. Formation of large-scale structures in the ablative Kelvin-Helmholtz instability. Phys. Plasmas, 2010, 17:122308/1-9

近年来发表论文:
[1] Wang Li-Feng, Wu Jun-Feng, Ye Wen-Hua, Fan Zheng-Feng, He Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6MJ Inertial Confinement Fusion Ignition Capsules. Chin. Phys. Lett.,2014, 31(4): 045201
[2] Guo Hong-Yu, Yu Xiao-Jin, Wang Li-Feng, Ye Wen-Hua, Wu Jun-Feng, Li Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry. Chin. Phys. Lett., 2014, 31(4): 044702
[3] 张维岩, 叶文华, 吴俊峰, 缪文勇, 范征锋, 王立锋,谷建法, 戴振生, 曹柱荣, 徐小文, 袁永腾, 康洞国, 李永升, 郁晓瑾,刘长礼, 薛创, 郑无敌, 王敏, 裴文兵, 朱少平, 江少恩, 刘慎业,丁永坤, 贺贤土. 激光间接驱动聚变内爆流体不稳定性研究. 中国科学: 物理学力学天文学, 2014, 44: 1–23
[4] Zhao Kai-Ge, Wang Li-Feng, Ye Wen-Hua, Wu Jun-Feng, and Li Ying-Jun. Incompressible Magnetohydrodynamic Kelvin–Helmholtz Instability with Continuous Profiles. Chin. Phys. Lett., 2014, 31(3): 030401
[5] Wang L F, Wu J F, Ye W H, Zhang W Y, and He X T. Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces, Phys. Plasmas, 2013, 20: 042708/1-12
[6] Liu W H, Wang L F (corresponding author), Ye W H, and He X T, Temporal evolution of bubble tip velocity in classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Plasmas, 2013, 20: 062101/1-11
[7] Wang Lifeng, Ye Wenhua, Fan Zhengfeng, Wu Junfeng, Li Yingjun, Zhang Weiyan, He Xiantu. Nonlinear Evolution of Jet-Like Spikes from the Single-Mode Ablative Rayleigh-Taylor Instability with Preheating. Plasma Science and Technology, 2013, 15(10): 961-968
[8] Wang L F, Ye W H, Zhang W Y, and He X T. Numerical investigation of nonlinear ablative single-mode Rayleigh–Taylor instability in the presence of preheating. Phys. Scr., 2013, T155: 014018/1-8
[9] 霍新贺,王立锋,陶烨晟,李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报,2013,62(14):144705/1-9
[10] Wang L F, Wu J F, Fan Z F, Ye W H, He X T, Zhang W Y, Dai Z S, Gu J F, and Xue C. Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability, Phys. Plasmas, 2012, 19: 112706/1-15
[11] Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M, and Yu M Y. Formation of jet-like spikes from the ablative Rayleigh-Taylor instability, Phys. Plasmas, 2012, 19: 100701/1-4
[12] Wang L F, Yang B L, Ye W H, He X T, Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas, Phys. Plasmas, 2012, 19: 072704/1-13
[13] Liu W H, Wang L F (parallel first author), Ye W H, and He X T. Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Plasmas, 2012, 19: 042705/1-7
[14] Wang L F, Ye W H and He X T. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability. Phys. Plasmas, 2012, 19: 012706/1-8
[15] 陶烨晟,王立锋,叶文华,张广财,张建成,李英骏.任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报,2012,61(7): 075207/1-7
[16] Fan Zhengfeng, Zhu Shaoping, Pei Wenbing, Ye Wenhua, Li Meng, Xu Xiaowen, Wu Junfeng, Dai Zhensheng, and Wang Lifeng, Numerical investigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target, EPL, 2012, 99:65003/1-6
[17] Yang B L, Wang L F, Ye W H, and Xue C. Magnetic field gradient effects on Rayleigh-Taylor instability with continuous magnetic field and density profiles. Phys. Plasmas, 2011, 18:072111/1-7
[18] Fan Zhengfeng, Xue Chuang and Wang Lifeng, Ye Wenhua, and Zhu Shaoping. Influence of real gas effects on ablative Rayleigh-Taylor instability in plastic target. Phys. Plasmas, 2011, 18:062108/1-6
[19] Wang L F, Ye W H, Sheng Z M, Don W S, Li Y J, and He X T. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime. Phys. Plasmas, 2010, 17:122706/1-8
[20] Wang L F, Ye W H and Don W S, Sheng Z M, Li Y J, and He X T. Formation of large-scale structures in the ablative Kelvin-Helmholtz instability. Phys. Plasmas, 2010, 17:122308/1-9
[21] Wang L F, Ye W H, and Li Y J. Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime. Phys. Plasmas, 2010, 17:052305/1-6
[22] Wang L F, Ye W H, and Li Y J. Combined effect of the density and velocity gradients in the combination of Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Phys. Plasmas, 2010, 17:042103/1-6
[23] Ye W H, Wang L F, and He X T. Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles. Phys. Plasmas, 2010, 17:022704/1-13
[24] Ye W H, Wang L F, and He X T. Spike deceleration and Bubble acceleration in the ablative Rayleigh-Taylor instability. Phys. Plasmas, 2010, 17:122704/1-6
[25] Wang L F, Ye W H, and Fan Z F, Li Y J. Nonlinear saturation amplitude in the Rayleigh-Taylor instability at arbitrary Atwood numbers with continuous profiles. EPL, 2010, 90:15001/1-6
[26] Wang Li-Feng, Ye Wen-Hua, and Li Ying-Jun. Two-dimensional Rayleigh-Taylor instability in incompressible fluids at arbitrary Atwood numbers. Chin. Phys. Lett., 2010, 27:025203/1-4
[27] Wang Li-Feng, Ye Wen-Hua, and Li Ying-Jun. Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability. Chin. Phys. Lett., 2010, 27:025202/1-4
[28] Ye Wen-Hua, Wang Li-Feng, and He Xian-Tu. Jet-like long Spike in nonlinear evolution of ablative Rayleigh-Taylor instability. Chin. Phys. Lett., 2010, 27:125203/1-4
[29] 王立锋, 范征锋, 叶文华, 李英骏. 用 NND 格式模拟 Kelvin-Helmholtz 不稳定性. 计算物理, 2010, 27(2):168-172 [30] Wang L F, Xue C, Ye W H, and Li Y J. Destabilizing effect of density gradient on the Kelvin-Helmholtz instability. Phys. Plasmas, 2009, 16:112104/1-6
[31] Wang L F, Ye W H, Fan Z F, and Li Y J. Weakly nonlinear analysis on the Kelvin-Helmholtz instability. EPL, 2009, 86:15002/1-6
[32] Wang L F, Ye W H, and Li Y J. Numerical investigation on the ablative Kelvin-Helmholtz instability. EPL, 2009, 87:54005/1-6
[33] Wang Li-Feng, Ye Wen-Hua, and Fan Zheng-Feng, Li Ying-Jun. A weakly nonlinear model for Kelvin-Helmholtz instability in Incompressible Fluids. Chin. Phys. Lett., 2009, 26(7):074704/1-4
[34] Wang Li-Feng, Ye Wen-Hua, and Fan Zheng-Feng, Li Ying-Jun. Multimode coupling theory for Kelvin-Helmholtz instability in incompressible fluid. Chin. Phys. Lett., 2009, 26:014701/1-4
[35] Wang Li-Feng, Teng Ai-Ping, Ye Wen-Hua, Xue Chuang, Fan Zheng-Feng, and Li Ying-Jun. Phase effect on mode coupling in Kelvin-Helmholtz instability for two-dimensional incompressible fluid. Commun. Theor. Phys., 2009, 52:694-696
[36] Wang Li-Feng, Ye Wen-Hua, Fan Zheng-Feng, Li Ying-Jun. Simulation of Kelvin-Helmholtz instability with flux-corrected transport method. Commun. Theor. Phys., 2009, 51:909-913
[37] 王立锋, 滕爱萍, 叶文华, 范征锋,陶烨晟,林传栋,李英骏. 超声速流体 Kelvin-Helmholtz 不稳定性速度梯度效应研究. 物理学报, 2009, 58(12):8426-8431
[38] 王立锋, 叶文华, 范征锋, 李英骏. 二维不可压流体 Kelvin-Helmholtz 不稳定性的弱非线性研究. 物理学报, 2009, 58(7):4787-4792
[39] 王立锋, 叶文华, 范征锋, 孙彦乾,郑炳松,李英骏. 二维可压缩流体 Kelvin-Helmholtz 不稳定性. 物理学报, 2009, 58(9):6381-6386
[40] 王立锋, 叶文华, 范征锋, 李英骏. 高精度有限差分法模拟 Kelvin-Helmholtz 不稳定性. 强激光粒子束, 2009, 21(3):381-385

版权所有: 北京大学应用物理与技术研究中心

地址: 中国 北京 北京大学工学院1号楼402室 邮编:100871 电话:010-62753944 Email:zhoulixin@pku.edu.cn